Radiographic Evaluation of Musculoskeletal Tumors

James C. Wittig, MD
Associate Professor of Orthopedic Surgery
Chief, Orthopedic Oncology
Mount Sinai Medical Center

Staging Studies

- Plain Radiograph
- MRI
- CT scan
- Chest CT
- Bone Scan

Plain Radiographs

Evaluate:

- Rate of tumor growth
- Tumor interaction with surrounding non-neoplastic tissue
- Internal composition of tumor

MRI

- Visualize entire bone and adjacent joint
- Best test for intraosseous extent and soft tissue extent
- Identify skip metastases
- Tumor proximity to neurovascular structures
- Occasionally helpful in diagnosis of bone or soft tissue tumors (experienced radiologist)

TABLE 1. MRI signal intensities of various tissues

Tissue	Image	
	T1-weighted	T2-weighted
Hematoma	High	High
Fat, fatty marrow	High	Intermediate
Muscle, nerves, hyaline cartilage	Intermediate	Intermediate
Cortical bone, tendons, ligaments, fibrocartilage, scar tissue, air	Low	Low
Hyaline cartilage	Intermediate	Intermediate
Red (hematopoietic) marrow	Low	Intermediate
Fluid	Intermediate	High
Tumors (generally)	Intermediate-to-low	High
Lipoma	High	Intermediate
Hemangioma	Intermediate (slightly higher than muscle)	High

CT

- Good for evaluating cortical details and destruction
- Subtle cortical erosions (endosteal;periosteal)
 not detectable on plain x-ray or MRI
- Subtle calcifications / ossification (Visible tumor matrix mineralization)

Pain Radiographs

- The next three slides demonstrates how plain radiographs should be utilized to evaluate a bone tumor
- There are specific characteristics that should be identified on plain radiographs that aid in the differential diagnosis of a bone tumor

Plain Radiographs

- Bone involved
- Is involved bone normal?
- What part of the bone?
- Open or closed growth plate
- Epicenter of lesion (cortex or medullary canal)
- Tumor contour and zone of transition between tumor and host bone

Plain Radiographs

- Mineralized matrix?
- Cortical destruction?
- Periosteal reaction? What type
- Involvement of joint space?
- Tumor multifocal?
- Is tumor of uniform appearanceor does it have several different components?

Radiographic Evaluation

- Bone Involved and Position in the Bone
- Pattern of Bone Destruction
 - Geographic, Permeative, Moth Eaten
- Margin of the Lesion
- Presence of Visible Tumor Matrix (Calcification/Ossification)
- Internal Trabeculations
- Cortical Erosion, Penetration, Cortical Expansion
- Periosteal Response
 - Continuous or Interupted

Patterns of Bone Destruction

- Geographic
- Motheaten
- Permeative

- Least Aggressive Pattern
- Slow Growing Lesion-Usually Benign
- Clearly Demarcated Lesion
 - Clearly Delineated Borders of Lesion
- Narrow Zone of Transitionbetween Tumor and Normal Bone
- May have Sclerotic Margin
- Thicker Sclerotic Margin is Less Aggressive
- No Surrounding Sclerosis means more Aggressive/Faster Growing
- Usually Benign; also Myeloma,
 Mets, Osteomyelitis (Especially
 Granulomatous) can be Geographic

Giant Cell Tumor

Giant Cell Tumor

Chondroblastoma

Geographic Bone Destruction ABC- Aneurysmal Bone Cyst

Geographic Bone Destruction Fluid-Fluid Levels on MRI

ABC

I WANT YOU!!!!!!!

Geographic Bone Destruction Giant Cell Tumor

MRI

CT Scan

- Types of Margins Around Lesion
 - ■IA (Thick Complete Sclerotic Margin)
 - Indolent Lesion
 - ■IB (Thin and Incomplete)
 - **Active Lesion**
 - ■IC (No Sclerotic Margin)
 - Aggressive Lesion

IA

IA-Non Ossifying Fibroma

IB—Giant Cell Tumor

IB

IB

IB

IC

IC

IC—Giant Cell Tumor

IB/IC

IC

IC—CT Demonstartion

Motheaten Bone Destruction

- More Aggressive Bone Destruction
- Less Well Defined Margins
- Larger Zone of Transition From Normal to Abnormal (Tumor)
- Multiple Punched Out Holes in the Bone
- Malignant Bone Tumors,
 Osteomyelitis,
 Eosinophilic Granuloma

Motheaten Bone Destruction

Permeative Bone Destruction

- Aggressive Lesion
- Rapid Growth Potential
- Poorly Demarcated and May Merge Imperceptibly with Uninvolved Bone
- Can Not Delineate Where Tumor Begins and Ends
- Tumor Not Clearly Demarcated
 From Normal Bone
- Malignant Bone Tumors (Ewings sarcoma; Osteosarcoma),
 Osteomyelitis, Osteoporosis

Permeative Bone Destruction Lymphoma

Permeative--Osteosarcoma

Permeative--Osteosarcoma

Permeative--Lymphoma

Permeative—MRI Shows Extent

Permeative Lesion Barely Perceptible on X-Ray

Permeative—MRI Demonstrates Tumor Extent Better

Permeative—CT Example The Tumor is Not Clearly Demarcated

Permeative

Permeative

- Calcification
 - Stippled, Flocculent, Rings and Arcs
- Ossification
 - Solid, Cloud-Like, Ivory-Like
- Must Differentiate Mineralization from Calcification Due to Dead or Necrotic Tissue, Fracture Callus (Pathologic Fracture), Sclerotic Response of Non-Neoplastic Bone to Adjacent Tumor Deposit

- Calcification
 - Rings, Arcs, Flocculent, Fleck-like
 - Cartilage Tumors
 - **Enchondroma**
 - Chondrosarcoma
 - Chondroblastoma
 - Chondromyxofibroma

- Cartilage grows in a lobular manner or in a ball like manner
- Calcification occurs around the periphery of these lobules
- If the calcification occurs completely around the periphery (circumference) it forms a circle or a **Ring** of calcification that is detectable on the Xray
- If the calcification occurs only partially around the lobule, it forms only part of a circle or an Arc that is detectable on the Xray

Cartilage Matrix

Stippled

A

Flocculent

Rings and Arcs ("o"'s and "c"'s)

Enchondroma or Low Grade Chondrosarcoma

Enchondroma

Chondrosarcoma

Intraosseous Lipoma

Chondrosarcoma

Osteochondroma

Dedifferentiated Chondrosarcoma

Rings and Arcs

Rings and Arcs-Calcifications Cartilage Tumor

- Ossification
 - Cloudlike, Fluffy, Marble-like
 - Osteosarcoma
 - Parosteal Osteosarcoma
 - Osteoblastoma
 - Osteoma

Osteosarcoma

Osteosarcoma

153 mm 000 ms 5 mm -175 ONE mA

Periosteal Osteosarcoma

Periosteal Osteosarcoma CT Scan

Conventional Intramedullary Osteosarcoma

Conventional Intramedullary Osteosarcoma

Marble-Like Ossification Osteosarcoma

Parosteal Osteosarcoma

Parosteal Osteosarcoma

Parosteal Osteosarcoma CT Scan

Parosteal Osteosarcoma

Parosteal Osteosarcoma CT Scan

Internal Trabeculations

- Residual Trabeculae or New Bone Formation Due to Adjacent Tumor
- Differential Diagnosis:
- Giant Cell Tumor
- Chondromyxofibroma
- Desmoplastic Fibroma
- Nonossifying Fibroma
- Aneurysmal Bone Cyst
- Hemangioma

Giant Cell Tumor

Desmoplastic Fibroma

Chondromyxofibroma

Nonossifying Fibroma

Hemangioma

ABC

Cortical Erosion, Expansion, Penetration

- Bone Cortex Can Be an Effective Barrier To Tumor Growth of Certain Tumors
- Certain Tumors Penetrate the Cortex Partially or Completely (Benign and Malignant)
- Progressive Endosteal Erosion that is Accompanied by a Periosteal Reaction Leads to an Expanded Bony Contour (Like an ABC)
- Aggressive lesion that Penetrates the entire Cortex or Penetrates Haversian Canals will Elevate the Periosteum and Lead to a Periosteal Reaction

Cortical Erosion, Expansion, Penetration

■ It is important to understand that both benign and malignant tumors can penetrate the cortical bone and form a soft tissue mass. The fact that there is a soft tissue mass does not automatically confer that the tumor is malignant. Certain benign tumors can also form a soft tissue mass. The periosteum usually remains intact around a benign soft tissue mass. This may only be detectable on a CT scan demonstrating an "Egg-Shell" rim of calcification around the periphery of the mass. The periosteum is usually destroyed by malignant tumors and does not remain intact around the soft tissue component of a malignant tumor.

Continuous

Interrupted

Codman's triangle

Lamellar

Spiculated

Periosteal Reactions as Related to Tumor Growth

Periosteal Response

- Benign: Buttressing Pattern; Single Lamellar; Cortical Thickening; Bony Expansion
 - Endosteal Erosion Leads to Periosteal Proliferation
 - Can Be Same or Diminished Thickness Compared to Normal Cortex
 - Buttressing: Interface Between Normal and Expanded Cortex is Filled In with Bone

Buttressing

Buttressing

Periosteal Response

- Malignant Tumors: Rapid Tumor Growth May Lead to Single or Multiple Concentric Layers
- Types of Malignant Periosteal Reactions:
 - Onion Skin: Multiple Concentric layers
 - Codman's Triangle: Occurs at the Periphery of a Lesion or Infective Focus
 - Sun Burst: Delicate Rays that Extend Away from the Bone (Angled with Bone)
 - Hair On End: Rays are Perpendicular to Bone

Onion Skin Appearance

Onion Skin

Onion Skin

Onion Skin

Codman's Triangle

Codman's Triangle

Codman's Triangle

CT Scan of Codman's triangle

Sunburst Pattern

Sunburst Pattern

Hair On End

Hair on End Periosteal Reaction

Soft Tissue Mass

- Primary Malignant Bone Tumors
- Benign Aggressive Bone Tumors
- Mets
- Osteomyelitis

Benign Aggressive Tumor

Periosteum Intact Around Periphery of Soft Tissue Mass

Benign Aggressive Giant Cell Tumor

Periosteum Intact Around Periphery

Malignant-- Osteosarcoma

Periosteum Not Intact Around Soft Tissue Mass

MRI of Osteosarcoma Periosteum Not Intact Around Soft Tissue Mass

Distribution in Bone

- **Position in Transverse Plain**
 - Central
 - Eccentric
 - Cortical
 - Juxtacortical (Periosteal/Parosteal)
 - Soft Tissue Location

Central Axis

- Enchondromas
- Fibrous Dysplasia
- Simple Bone Cysts

UBC

UBC

Fibrous Dysplasia

Fibrous Dysplasia

Fibrous Dysplasia

Enchondroma

Eccentric Lesions

- Giant Cell Tumor
- Osteosarcoma
- Chondrosarcoma
- Chondromyxofibroma

GCT

Chondrosarcoma

Chondromyxofibroma

Cortical Lesions

- Nonossifying Fibromas
- Osteoid Osteomas

Nonossifying Fibroma

Brodie's Abscess

Brodie's Abscess

Brodie's Abscess

Juxtacortical Lesions

- Juxtacortical Chondroma
- Periosteal Osteosarcoma/Chondrosarcoma
- Parosteal Osteosarcoma

Periosteal Chondroma

Periosteal Chondrosarcoma

Periosteal Osteosarcoma

Periosteal Osteosarcoma

Periosteal/High Grade Surface Osteosarcoma

Periosteal/HGS Osteosarc

Periosteal/HGS Osteosarc

Periosteal/HGS Osteosarcoma

Parosteal Osteosarcoma

Parosteal Osteosarcoma

Osteochondroma

Osteochondroma Cortico-Medullary Continuity

Surface Osteoma

Myositis Ossificans Zonal Phenomenon—Central Lucency

Melorrheostosis "Candle Wax Drippings"

Position of Lesion in Longitudinal Plane

- Epiphysis
- Metaphysis
- Diaphysis

Epiphyseal Lesions

- Adults:
 - Clear Cell Chondrosarcoma
 - Metastasis, Myeloma, Lymphoma
 - Lipoma
 - Intraosseous Ganglion

Epiphyseal Lesions

- Children:
 - Chondroblastoma
 - Osteomyelitis
 - Osteoid Osteoma
 - Enchondroma
 - Eosinophilic Granuloma

Metaphyseal Lesions

- GCT (extends to epiphysis)
- Nonossifying Fibroma
- Chondromyxoid Fibroma
- Simple Bone Cyst (Unicameral Bone Cyst)
- Osteochondroma
- Brodie's Abscess
- Osteosarcoma
- Chondrosarcoma
- MFH/Fibrosarcoma

Diaphyseal Lesions

- Ewing's Sarcoma
- Nonossifying fibroma
- Simple Bone Cysts
- Aneurysmal Bone Cysts
- Enchondromas
- Osteoblastomas
- Fibrous Dysplasia
- Adamantinoma
- Osteofibrous Dysplasia

Epiphyseal Equivalent Areas

- Subchondral Regions of Acetabulum and Scapula
- Tarsal Bones
- Calcaneus, Talus

Growth Plate

- Tumors Usually Do Not Cross Growth Plate
- Think Infection

Mature Skeleton (Growth Plate Closed)

- Heamatopoietic Marrow—predilection for sites with red marrow; rich sinusoidal vasculature
- Axial and Appendicular Skeleton in Children
- Axial Skeleton in Adults
 - Metastatic Disease
 - Myeloma
 - Ewing's Sarcoma
 - Histiocytic Lymphoma

- Areas of Rapid Growth
- Primary Bone Tumors
 - Distal Femur
 - Proximal Tibia
 - Proximal Humerus

- Vertebrae (Adults)
 - Skeletal Mets
 - Myeloma
 - Hemangioma
 - Lymphoma
 - Osteomyelitis
- Vertebrae (Children)
 - EosinophilicGranuloma
 - ABC
 - Osteoblastoma
 - Osteoid Osteoma
 - Lymphoma
 - Leukemia
 - Osteomyelitis

- **■** Sacrum
 - Chordoma
 - Myeloma/Plasmacytoma
 - □ Giant Cell Tumor
 - Mets
 - Simple Cysts
 - Neurogenic Tumors /Schwannoma

- Ribs
 - Mets
 - Fibrous Dysplasia
 - Enchondroma

- Metacarpals and Phalanges
 - □ Giant Cell Tumor
 - Giant Cell Reparative Granuloma
 - Sarcoidosis
 - ABC
 - Fibrous Dysplasia
 - Enchondroma

- Terminal Phalanges
 - Inclusion Cyst
 - Glomus Tumor
 - Mets (Lung)

Figure 15.28 Examples of Tumors and Tumor-Like Lesions With a Predilection fo Specific Bones, Sites in Bones, and Location*

LESION	BONE	ANATOMIC SITE	LOCATIO
Simple bone cyst	Humerus	Metaphysis	Central
	Femur	Proximal diaphysis (see Figs. 17.26, 17.27)	
Osteoid osteoma	Femur	Neck of femur (see Figs. 16.4,	
	Tibia	16.16)	
Chondroblastoma		Epiphysis (see Figs. 15.6, 16.52, 16.53)	Eccentric
Parosteal osteosarcoma	Femur	Posterior aspect, distal end (see Figs. 15.18, 18.14)	
Chordoma	Clivus		Central
	C-2		
	Sacrum		
Osteofibrous dysplasia Adamantinoma	Tibia	Anterior aspect (see Fig. 17.20)	
Giant cell tumor	Femur	Articular end (see Figs. 17.36,	Eccentric
	Tibia	17.39, 17.41, 17.42,	
	Radius	17.43)	
Aneurysmal bone cyst	Tibia	Metaphysis (see Fig. 17.32)	Eccentric
	Humerus		
Chondromyxoid fibroma	Tibia	Metaphysis (see Figs. 16.55, 16.56)	Eccentric
Multiple myeloma	Pelvis		
	Spine	Vertebral body	
	Skull	Calvaria (see Figs. 18.43, 18.45)	

100 1000 1000 1000 1000 1000 10 40 10 11 10 14 171 1719 1794 1790

Unknown Examples

- Epiphyseal Lesion with Geographic Pattern of Bone Destruction (Probably Benign)
- Eccentric
- Internal Mineralization/Calcifications (indicates most likely cartlaginous nature)
- Sclerotic IA/IB Margin

Chondroblastoma

- Spine Lesion
- Posterior Elements
- Geographic Pattern of Bone Destruction (Probably benign)
- Internal Mineralization indicative of bone producing or cartilage producing tumor

Osteoblastoma

- Small Cortical Lesion
- Geographic pattern of Bone Destruction
- Extensive Surrounding Sclerosis
- Buttressing Periosteal Reaction (Benign Periosteal Reaction)
- Internal Mineralization

Osteoid Osteoma

- Central, Diaphyseal Lesion
- No Periosteal Reaction
- No Cortical destruction
- Calcifications in a Ring and Arc Like Manner

Enchondroma

- Metaphyseal Eccentric Lesion
- Permeative Lesion (Malignant)
- Cortical Destruction
- Calcifications in a Ring and Arc Manner indicative of a cartilage tumor

Dedifferentiated Chondrosarcoma

- Permeative Pattern of Bone Destruction
- Diaphyseal
- Cortical penetration
- Hair on End Periosteal Reaction
- No Internal Mineralization (probably not bone or cartilage producing)
- Malignant Appearing

Ewing's Sarcoma

- Metaphyseal, Central lesion
- Permeative Pattern of Bone Destruction (malignant)
- No Internal Mineralization (probably not cartilage or bone producing—no visible matrix)
- No Periosteal Reaction
- Malignant Appearing

Fibrosarcoma of Bone

- Central Lesion
- Geographic Pattern of Bone Destruction (Benign Appearing)
- Metadiaphyseal
- Bone is Expanded (Benign Periosteal reaction)
- No Internal Mineralization (Probably not Cartilaginous or Bone Producing)
- Ground Glass Appearance

Fibrous Dysplasia

- Eccentric Lesion
- Metaphyseal with Epiphyseal Extension
- No Internal Mineralization
- Cortex is Thinned and Slightly Expanded
- Thin, Incomplete Sclerotic Margin (Type IB)
- Benign Appearing

Giant Cell Tumor

- Metadiaphyseal Lesion
- Motheaten and Permeative (Malignant Appearing)
- No Internal Mineralization
- Cortical Destruction
- No Periosteal Reaction

Malignant Fibrous Histiocytoma of Bone

- Central Location
- Metaphyseal
- Multiloculated
- Geographic
- Bone is Expanded
- Skeletally Immature
- No Mineralization
- Benign Appearing

Unicameral Bone Cyst

- Eccentric/Cortical Lesion
- Metaphyseal
- Geographic pattern of Bone Destruction
- Well Circumscribed (Type IA Margin: Indolent)
- No Internal Mineralization
- Bone has Expanded Contour
- Benign Appearing

Nonossifying Fibroma

- Geographic, Central Lesion in a Phalange
- Lobular Growth Contour with Endosteal Erosion
- Punctate calcifications (arrows)--Cartilaginous
- Appears Benign

- Cortical based, Geographic Lesion in Tibia
- Extensive Sclerotic Margin
- Tibial bowing

- Permeative/Moth Eaten Lesion (Malignant)
- Eccentric, Metaphyseal
- Ossification Present within Neoplasm
- Codman's Triangle
- Skeletally Immature; Spares Growth Plate
- Cortical Destruction
- Appears Malignant and is Producing Osteoid

Osteosarcoma

Osteofibrous Dysplasia

